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Figure 6. The Actual and Reference Trajectories, and
the Perturbation State éx(t)

about the reference values (5o(t) and go(t)) in a Taylor

Series:
O£
£(x(t)),u(t)) = flx (t),u (¥)) + 5% | 8x(t)
O
3£
* g | Sult) + o (8x(t),8u(t)) (5)
“lo
o g g
g(x(t),ult)) = glx (t),u (t)) + e sx(t) + —| ou(t)
X1, 8y
+ B (8x(t),8u(t)) (6)

where the vector functions 24 and B, represent the higher

[f the nominal is sub-
tracted from the above equations and the higher order terms

order terms in the series expansion.

%4 and g, are neglected, the linear system model results:
§x(t) = A(t)éx(t) + B(t)su(t) (7)
Sy(t) = C(t)sx(t) + D(t)du(t) (8)
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where

A(t) is the nxn state matrix (3f/3x) evaluated along
the reference trajectory at io(t) and go(t)

h B(t) is the nxm control matrix (3f/5u) evaluated
at x = X , u =u
= =0’ = -0

C(t) is the rxn state measurement matrix (3g/3x)
evaluated at Xx = Xgo U = ug
D(t) is the rxm control measurement matrix (3g/5u)
evaluated at x = Xg» U = ug
The structure of the linear system model is depicted in Figure

In general, the matrices of partial derivatives A, B, C,
and D must be calculated along the reference trajectory; i.e.
the elements of the matrices are functions of the reference
state and reference control. The system is thus time varying
{(or nonautonomous). For certain classes of systems, it may be
permissible to assume these matrices to be constant over the
region and time interval of interest. In this case, the system

is classified as time invariant, and the coefficients of the

r j nle)
I
| ]
[ |
|
;EJL__K
——W 8(t) c(e)
PERTURBAT
:5~r‘505 : PERTURBATION
INPUT) MEASUREMENT
ouTeYT)

Figure 7. Structure of the Linear (Perturbation) Model
of a Physical Process
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linear differential equations represented by Eqs. (7) and (8)
become constant. The constant coefficient differential equa-
tions are amenable to the transform methods which are critical

to classical design approaches.
d. Reduced Order Modeling

For the purpose of simply predicting or "simulating'" state
trajectories, state models of high dimensionality (n ~ 30 or
more) are well within the computational capabilities of modern
large-scale computing systems. However, as a rule, control
system design methods, both classical and modern, rapidly
become unwieldy as system dimension increases. For this
reason, much attention has been given to the reduction of model
order. It should be noted that controllers designed using a
reduced-order model will be suboptimal. The performance of such
suboptimal controllers must be evaluated, generally, in a high-
fidelity simulation to determine whether the reduced-order de-

signs are acceptable.

The following outlines some of the more successtful methods
of reduced-order modeling. Specific examples will be given in

subsequent sections.
(1) Neglecting Subsystems

The most basic form of model order reduction is
simply ignoring certain subsystems whose states are either not
observable or not controllable. An example of this is the
neglecting of bending modes whose natural frequencies are
beyond the control bandwidth of the actuator which moves a

particular aerodynamic surface.

17




An observable subsystem is one whose initial state 5(to)
can be completely and uniquely reconstructed from all subsequent
measurements y(t) and controls u(t) in the interval [to,tf].
Similarly, a controllable subsystem is one which can be brought

from an arbitrary initial state i(to) and initial time to a
specified terminal state £(tf) within the time span (tf-to).
There exist in the literature [6] certain mathematical expres-
T sions which test for observability and controllability, notably

for linear systems. While these expressions will not be re-
iterated here, Figure 8 presents an illustration of this most
basic concept of model reduction.

FULL ORDER REDUCED ORDER

=

ey

3
? Ml = CONTROLLABLE, UNOBSERVABLE SUBSYSTEM
E M2 = CONTROLLABLE, OBSERVABLE SUBSYSTEM
|
! M3 = UNCONTROLLABLE, OBSERVABLE SUSBSYSTEM
E M1 + M2 * My = COMPLETE SYSTEM MODEL
] Figure 8. Reduction of Model Order by Elimination of Unobservable

or Uncontrollable Subsystems
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(2) Singular Perturbations

Neglecting subsystems and system states which are
assumed to be insignificant to the control objectives being ad-
dressed frequently takes on ad hoc connotations, relying on the
experience and engineering judgment of the designer to effect a
suitable reduced-order model. A more systematic way of reducing
the order of a large class of nonlinear systems, namely, those
which exhibit a wide dynamic range (i.e. '"slow" and '"fast'")
of characteristic modes, is provided by singular perturbation
theory.

Simplistically, the singular perturbation method can be looked
upon as a time scaling procedure, which decouples the problem into
several problems of a lower order and addresses each of these at
an appropriate time scale. The method first defines the slowest
time scale (or 'free-stream' or ''outer expansion'') dynamics by
assuming that all the faster dynamics are in equilibrium. Once
this outer solution is determined, the method then investigates
the faster time scale (or '"boundary layer'" or 'inner expansion')
problem as a correction about this outer solution [7].

The method begins by grouping the states of the high-order
model according to a small parameter ¢ . This small parameter
may either occur naturally in the model (such as a short time
constant) or it may be introduced intentionally as an artificial
time-scaling parameter. The nonlinear state model (Eq. (1)) is
then partitioned into the form:

x; = £, (x9, x5, 4, t) (9

| =

E.;SZ - iz (51» 25 Y, t) (10)

where the subscripts 1 and 2 refer to the states associated with
the slower and faster dynamics respectively. The method then

19




seeks a series solution in € about ¢€=0; thus ¢ 1is set equal
to zero in Eq. (10) which reduces to an algebraic relation: .

0 = £2 (51’ __35_2’ u, t) (11)

This is equivalent to the faster states X, being in equilibrium.
Equation (11) serves as a condition which can be used to eliminate
certain of the faster states X, or certain control variables*

u from Eq. (9). For example, Eq. (11) can be solved for X,

X = ¢ (X9, 4, t) (12)

and Eq. (9) is reduced to the order of the slower states Xt

Xp 07 E(xys 00Xy 4, B), 4, ) = £,7(x, u, t) (13)

The solution of the outer expansion (Eq. (13)) neglects the
dynamics of X5s the outer solution will typically have discon-
tinuities (most noticeably at the initial time) because of this
assumption that the states X, can change their values instan-
taneously. The boundary layer (or inner expansion) analysis exam-
ines fast phenomena in terms of the parameter e and provides a
correction to the outer solution, as illustrated in Figure 9.

* If the outer expansion is to be solved by optimization methods,
there are cases where it is mathematically advantageous to :
eliminate some of the elements of u and retain the same number b
of elements of X, to act as new control variables in the outer

solution. For example, pitch angle is a 'fast'" state in the
longitudinal aircraft dynamics, relative to flight path angle,
and elevator angle may be the true control variable; the '"outer
solution"” may well be expressed with pitch angle (the equilib-
rated state), rather than elevator, as an effective control
variable. This procedure is particularly effective when the
elements of u being eliminated appear linearly in the differ-
ential equations or cost functional (singular variational
problems) or when the elements of x, being retained as new

control variables are constrained independently of u (state-
constrained variational problems) (8].
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d{//// OUTER SOLUTION

) SOLUTION CORRECTED
BY BOUNDARY LAYER
ANALYSIS

Figure 9. Illustration of the Singular Perturbation Solution

The boundary layer (inner-expansion) is examined by making

the time transformation
T = t/e€ (14)

In the "stretched" time scale 1t , the original Egs. (9) and (10)
take the form:

dil
-aT_ - & _f_l(§_1’ Ez’ E’ GT) (15)
dgz
dJt 0 _f_ (_7_(_17 EZ' u, €T) (16)
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Again letting € approach zero, the slow variable 51(1) appears
as a constant* in the stretched time, and the behavior of the sys-
tem in the boundary layer is described by the reduced-order equa-
tion:

dx

= £, %0, w0, O (17)

where Zl is the average or nominal value of X; as defined by
the outer solution.

In summary, Eqs. (13) and (17) in the development above
represent the two separate reduced-order problems derived by sin-
gular perturbation theory from the original high-dimensional
problem (Eqs. (9) and (10)). In general, the singular perturbation
approach is approximate and the resulting design must be checked
for validity. For the case of linear systems, a number of mathe-
matical conditions and techniques have been formulated to 'prove"
validity of the method under restricted conditions ([7]. The
singular perturbation methods as applied to aircraft guidance
problems is discussed further in Section III.

(3) Modal Decomposition

For the case of linear time-invariant systems in
particular, a number of systematic methods have been developed
which aim at decomposing the high-order system by identifying
its normal modes and then retaining only those which are ''dom-
inant" in the system response, i.e., those which are in the
frequency range of interest. Such approaches are termed '"dom-
inant mode,'" ''dominant eigenvalue,'" or ''pole removal' methods
9, Ktk

* j.e., Eq. (15) reduces to dﬁl/dT = 0.

(3
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Basically, these methods proceed as follows. From the pre-
vious development, the linear, time-invariant system model can be
written:

O
~
]

A 8x + B du (18)

"

§y = C 6x + D Su (19)
This system of equations can be transformed to a canonical (block
diagonal) form by the transformation T, which is an nxn matrix
composed of the column eigenvectors of A:

dx = T &x° (20)
§x“= A 6x” + E Su {21)
dy = CT 6x“+ D 6u (22)

where
A is an nxn block diagonal matrix
65‘ is an nxl vector of modal coordinates

= is an nxm modal control distribution matrix

Once in this form, the characteristic modes of the original system
can be examined directly through the block diagonal elements of

A . One can now partition A such that, for example, all "slow"
or ""dominant' modes are grouped with partition A1 and all '"fast"
or "removable'" modes are grouped with partition A, . The parti-
tioned problem is then:

"Bl taihazl]
loed 1 et Sd | - (23)
= %o 17221175 ]
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8%, Ay x . 1Py %y
ol .l R ==+ }|--~] Su (24)
9% & rBo b} A% =2

where 651 is of dimension qx1 and 6§2 is of dimension (n-q)xl.

: Now if the 'fast'" modes are assumed to be in equilibrium,
then the following reduction can be made: the states &x5; are

assumed to be equilibrated (i.e., éié = 0) and Eq. (24) reduces
| 2.t
‘ to a qth order differential equation in 65i and (n-q) algebraic

equations in dﬁé. Thus, one can write:

t 6{1 = Ar 651 + Br Su (25)
6§2 c* D*
= 651 + du (26)
sy Cr Dr
where the reduced-model matrices are calculated as:

=1 -
[ AL = T 0 Ty, (27)
r
| B, o= T, ATy aitls, o 2 (28)
| p ® TpgthghyaTagha™3s * 5 2
C* = T,.T 1 (29)
21711 -
PR & (ToaTolT., - Tou)a5te (30)
21T11T12 - Ta2dA %, ~
Gy # By * €508 (31)
D_ = D + C,D* (32)
th

Equation (25) is now the q -order reduced model; the

states &x, now are observed merely as additional outputs of the




system (Eq. (26)) rather than as dynamic entities. The poles
associated with A, have essentially been “removed'" from the

problem and only the ''dominant'" modes A, are retained.

(4) Control-Sensitive Methods

The previously discussed methods have based their
order reduction decisions on the open-loop model; they ignore the
specific effects of the control inputs because these inputs are
not known a priori. Controllers designed based on the open-loop
methods (singular perturbations, dominant eigenvalues, etc.) be-
have as predicted if the control bandwidth is sufficiently low
as to not alter the original '"slow'" and ''fast'" designation of the
modes. However, if the control objectives require a high band-
width, those modes originally designated as slow may become fast
in closed-loop operation, and performance may deteriorate from
that predicted.

Considerable recent effort [11, 12] has been directed towards

developing model reduction methods which are ''sensitive' to the

control objectives. These methods, then, proceed to derive the

reduced-order model such that the optimal control policy for the
reduced-order model is the 'best'" suboptimal control policy for

the actual system. The model reduction and control design pro-

cedures are thus intertwined.

While these control-sensitive methods avoid the above-
mentioned problems with open-loop model reduction, they do incur
added off-line computational burden over the more standard tech-
niques. The implementational form of the resultant controller,
however, compares favorably with the standard techniques. Further
discussion on these advanced methods is beyond the scope of this
report.
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e. Aircraft State Models

Models which have been developed and refined (for ex-
ample by using the model reduction techniques described above)
for application to the design of aircraft control systems vary
widely, ranging from simple point-mass ''quasi-steady"* repres-
entations to sophisticated high-order models which include de-
flections of the airframe. For control design purposes, the
designer typically attempts to arrive at the simplest model which
adequately represents the ''control object' or "plant' being ad-
dressed. This will usually result in the least expensive design
in terms of engineering effort and also of implementation costs.
Moreover, simpler models frequently allow the designer to acquire
more insight into the process being controlled, resulting from
the paring away of variable and functional relationships which
are of secondary importance to the achievement of the control
objectives. However, it is good engineering practice to retain
higher fidelity system models as well, and use these to check the
design which was based on the simpler, more extensively approx-
imated models.

While an extensive summary of aircraft modeling activities
is beyond the scope of this report, a discussion of selected mod-
eling techniques and approximations 1is presented in the Appendix,
which comments specifically on six-degree-of-freedom aerodynamic

modeling (see also Ref. 4); the quasi-steady approximation; and the

energy-state approximation.

* The quasi-steady approximation neglects acceleration of the
aircraft.
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Sis DESIGN APPROACHES

Many techniques have been developed to synthesize control
systems in general and aircraft guidance and control systems in
particular. These techniques are typically categorized as to
whether they treat linear or nonlinear systems, time-varying or
time-invariant systems, continuous or discrete systems, multi-
variable or single-input/single-output systems, e%c. Addition-
ally, techniques can be compared as to the performance criterion
they are attempting to satisfy and the general structure of the
resulting controller design.

The indivicdual techniques can be organized into several gen-
eral approaches, the following three of which will be discussed

in the remainder of this section:
e Nonlinear Optimal Control
e Linear Optimal Control (Quadratic Synthesis)
e C(Classical Control

Perhaps the key distinction between overall approaches to
aircraft guidance and control system design is whether the design

approach requires a linear, time invariant system model. This is

the case with the bulk of the classical techniques and with some

of the model reduction procedures (modal decomposition) discussed

above.

Fortunately, for many problems of interest in aircraft
guidance and control, a quasi-static approximation can be made.

This proceeds as follows. The time-varying state model after

linearization is given by Eqs. (7, 8), which are repeated below:

§x(t) = A(t) 86x(t) + B(t) du(t) (33)
§y(t) = C(t) 8x(t) + D(t) 6u(t) (34)
27




Often, the variations in the matrix elements are slow relative to
the dynamics of the state variables themselves. In this case, a
common engineering practice is to approximate the time-varying :
linear system by a series of time-invariant system models, each
referred to a particular reference point or '"flight condition.”
Separate designs are then based on each of the linear, time-
invariant models, and the individual designs then aggregated in
such a way as to cover the flight envelope, i.e., the full range
of flight conditions addressed by the design. Typically, a suf-
ficiently general controller structure is selected so that only
the controller's parameters or gains need be 'scheduled" or varied
as a function of trajectory variables (e.g., dyvnamic pressure,

' Mach number, etc.) in order to effect the required aggregated
design. Optimal control techniques, both linear and nonlinear,
are not restricted to time-invariant systems, and consequently do
not rely on the quasi-static assumption. This distinction will

be evident in the remainder of this section.
a. Nonlinear Optimal Control

Presented here is a brief summary of the optimal control

design approach. The summary addresses deterministic optimal con-

trol only, rather than stochastic control where random inputs and
uncertainties in the system parameters are allowed. Emphasis is i
on the basic principles and motivations of the approach as applied ;
to the aircraft guidance and control problem. Rigorous develop-

ment is beyond the scope of this report; for a more detailed f

treatment of the subject, the reader is referred to Refs. 6, 13 |
and 14. ‘

(1) System Model

The nonlinear system model addressed by the optimal

control approach was developed above and can be expressed in the

form:

x(t) = £(x(t), u(t), t) (35)




with the initial condition i(to) given. As will be seen later, in
the solution to the optimal control problem, this state dynamic
relation is treated as a "constraint" which must be satisfied at
every point along the solution trajectory.

to

(

) Performance Index

The crux of the optimal control design approach is

the specification of an appropriate performance index (or cost

functional) because the "optimality'" of the resulting design only
has meaning when referred to this performance criterion. The
performance index must be posed in a suitably concise form so

as to be economically solvable by mathematical techniques, vet

it must be sufficiently general to encompass a number and div-
ersity of design objectives. Such objectives might address the
time, fuel, or energy to reach a target condition, the terminal

errors, mean-squared error along a path, etc.

The form for the performance index which has evolved to

meet these broad and often conflicting requirements is given by:

I = (x(t,), () st te) + f ° Lx(t), ult),t) dt (36)
o)
The performance index, J, 1s a scalar function which is defined

such that low values of J (the '"cost'") indicate ''good" perform-
ance and high values of J 1indicate '"bad'" performance. As can

be seen in the above expression, J 1incorporates any requirements
on the initial or terminal state by means of the penalty function
°(§(to)'§(th'to'tf) and any state-variable constraints, control-
variable constraints, and optimality criteria in the function
L(x(t),u(t),t), which accrues penalty over the entire time in-

terval of interest [to,tf].

Table 1 illustrates the generality of the performance index
form (Eq. (36)) for expressing the control objectives of several
simple aircraft guidance and control problems. Other such examples

are provided in Section III.




EXAMPLES OF

TABLE 1
THE GENERALITY OF
INDEX STRUCTURAL

THE PERFORMANCE

FORM

e
ox(ty)x(teitoate) + [ Lx(t)u(e),t)at
to
PROBLEM J ) It EXAMPLES
te %
Minimum Time tf'to =.jf at 10 1 Intercept of at- ;
to tacking aircraft E
and missiles 1
Slewing-mode opera- |
tion of radar or >
gun system f
Minimum "weight- [5(tf)—£(tf)]T Hio(x(te)) |0 Ballistic missile
ed" (by H) ter- control
minal errors Rendezvous for
[iﬁtf)-i(tf)] cargo delivery
e
Minimum "weight- _‘/_ g'(t)Rgﬂt)dt 0 Liu(t)) Minimum rate of
ed" (by R) con- + fuel consumption
trol effort s for rocket engine |
te "
Optimal track- [x(t)-r(t)] ' Q | O L(x(t)) Slewing of radar or
ing of refer- to gun to track target
ence r, weight- Maintaining aircraft
ed by Q [x(t)-r(t)]dt near reference path




(3) End Conditions

To complete the formulation of the optimal control
problem, one must consider the end conditions required to be met
by the problem solution. In general, the initial and final states
(end states) and the initial and final times (end times) can be

defined by a vector of algebraic expressions:
pix(ty),x(te),t ,te) = o (37)

Any of these end states and end times may be completely fixed,
completely free (i.e., unconstrained), or related to other end
conditions* (i.e., certain relationstips between the states and

times must be satisfied at the end conditions).
(4) Problem Formulation Summary

The optimal control problem may now be stated
simplistically: Find the control u(t) which minimizes the per-
formance index J (Eq. (36)) and conforms to prescribed terminal
constraints y (Eq. (37)) while satisfying the system dynamical
equations (Eq. (35)].

Before the problem formulation is complete, one must consider
the assumptions which may be permitted in order to arrive at its
solution. Typically, these assumptions relate to the differentia-
bility of the functions ¢, L, f, and ¢ and to the boundedness
of the states x and controls u. For the remainder of this
discussion, it will be taken that all necessary assumptions for
solution are met and that the states are unbounded but the con-
trols are bounded. The allowance for bounded rather than un-
bounded controls is of importance, since most physical processes

contain controls that are bounded. Some aerospace vehicle examples

* Another way of saying this is that the end conditions are
located on a hypersurface or manifold.
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are: minimum and maximum thrust of a propulsion system, minimum
and maximum deflection of a thrust vector, maximum available con-

trol power, maximum thrust vector rotation rate, etc.

(5) Solution Techniques

Most cf the multitude of solution techniques which
have been developed to address the optimal control problem can be

placed in the following two categories:

. Calculus of variations techniques

] Numerical techniques

Calculus of variations (notably the Pontryagin minimum principle
(15]) techniques can be used to obtain a set of analytic expres-
sions which constitute a set of necessary conditions for optimal-
ity. Numerical techniques are inherently iterative, but can be

used to converge on the optimal control time function and associ-

ated optimal trajectory cver the time interval [to,tf].

There are many and varied numerical iterative techniques

(e.g., the gradient method and quasi-linearization method, Ref. 14,
Chapter 7; differential dynamic programming, Ref. 16; among others)

further treatment of these is beyond the scope of this report.
Because of its widespread use and the insight it lends into the
nature of solution of the optimal control problem, however, the

"minimum principle'" approach will be summarized below.
(6) Minimum Principle

Solution by the minimum principle involves first
augmenting the performance index by the mathematical technique
of adjoining the constraints (Eqs. (35) and (37)) to the perform-
ance index J. This effectively converts the original constrained
protlem to an unconstrained protlem of higher dimension. The

"increase in dimension' is due to the use of Lagrange multiplier
(adjoint) vectors v and A(t). The adjoined performance
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J* index is:
£
=gty O aTED a (38)
which, using Eq. (36), can be written:
f .
J*=¢+2T£*f L+ AT -2T %) de (39)
to

The adjoined performance index may finally be written in the more

concise form:

Lf e
J* - @-ojf (H - 2 x) dt (40)
l.‘O

by defining the Mayer functional:

“b(ﬁ(to)’)_(.(tf):to’tf) = °(£(to)’§(tf),to,tf}

+ gT vix(tg),x(te),t ,te) (41)

and the Hamiltonian:

H(x(t),u(t), a(t),t) = L(x(t),u(t),t

el E(x(t),ult), (42)
The minimum principle now determines the control which mini-
mizes J* of Eq. (40) by examining the variation in J* (i.e., 6J%)
due to variations in the control (8u). An extremum (i.e., a
minimum under the desired circumstances) is reached where &J*% = 0
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for arbitrary Su. This requirement leadsdirectly (Ref. 14

’

Chapter 2) to the Euler-Lagrange equations:

T 3H "
L (43)
3H _

Ju 0 (44)

Equation (43) is also called the "adjoint" or 'co-state'" equa-

tion, since it describes the dynamics of the adjoint (or co-state)

vector A(t). The optimal control Eopt(t) is found from Eq. (44)
if the control set is unbounded (unconstrained). For a restricted

control set, alternate procedures must be used to find the control

which minimizes the Hamiltonian®* (Ref. 17, Section 4.3).
’ F

The minimum principle also determines expressions for boundary

or transversality conditions necessary in the total solution.

These expressions vary as a function of the "freedom" in the end
conditions for x and t, as specified in the problem formulation.
For example, if there are no terminal constraints ‘i(tf) = 0) and
the terminal time is a fixed rather than free value, the trans-

versality condition is:

T

_{ae
T (35 il
<) |,.

A summary of some of the more common end conditions and the corres-

-

ponding transversality conditions are illustrated in Table 2.
(7) Comments

The minimum principle approach, while it yields
valuable insight into the optimal control problem by providing
analvtical expressions for optimality, is not without practical

difficulties. Many of these difficulties stem from the usual

’ * 1.e., Eq.(44) will yield an expression for the control which
minimizes the Hamiltonian if the control set is unbounded.
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TABLE 2
ILLUSTRATION OF TYPICAL END CONDITIONS AND
ASSOCIATED TRANSVERSALITY EXPRESSIONS

e ILLUSTRATION
CESCRIPTION INO CONDITIONS TRANSVERSALITY ACCEPTABLE T&AEE';T)E‘RI‘S
A6 4
F
1xed to
Sixed Fixed t,
End - 7
londitions Fixed x(t,) /
Fixed x(t.) \
t:) j¥3 <
x(t)
Fixed ta
2fce Fived t T 3 o
Terminal { 4 V)
State =3 At Z
Fixed x(t ) f
=ts Xat=== /\
Free x(t,)
* + €
t, te
x(t)
’
Fixed to
Free
Terminal Free Gy Derlesr| o
Time 9t Y I
Fixed 1(t°) te
Fixed x(t,)
t
o
x(t) s c(t,) N
Terminal Time Fixed t
Jnspecified 5
3ut Related Fixed x(t ) 064)33'3' =0
to Terminal o L ¢
State x(ty) = clt,) i

occurrence of "split' boundary conditions of the differential
equations which must be solved to obtain the optimal control. This
two-point boundary-value problem is illustrated by summarizing the
above development as follows: To find the optimal control, one must

solve the following differential equations:
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x = £(x,u,t) (46)

: oH 3 af aL .
1o (5) - s) 2 (%) 1)
where u(t) is determined by

il

subject to the boundary conditions, for example,

5(to) given (49)

Equations (49) and (50) constitute the split boundary conditions.
In general, numerical methods or approximate analytical methods
must be used to solve such a problem, namely, to integrate Egs.
(46) and (47) subject to the boundary conditions (49) and (50).

The solution to the nonlinear optimal control problem (found
either analytically or numerically) is usually expressed simply as
a function of time. Thus it can be pre-computed off-line, stored,
and retrieved on-line and applied as necessary. Consequently, the
optimal control gopt(t) is an "open-loop" control. It is based
entirely on the a priori model of the system (Eq. (46)); the

optimal control does not require (or, more to the point, admit)
measurements of the state at any time other than the initial con-
dition §(t0). As a result, the optimal control is not sensitive

to deviations of the actual state from that predicted by the model,
which may contain errors or approximations. Moreover, the optimal
control is not sensitive to unmodeled disturbances which may
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further drive the system states away from their modeled behavior.
This open-loop nature of the optimal control is illustrated in

Figure 10.

One way of dealing with these problems is to close the loop
in effect by re-computing the optimal control periodically, using
the current best estimate of the state (derived from the feedback

4 sensors) as the initial condition for the most recent solution.

This technique, while providing a closed-loop feedback control,
can be extremely resource consuming, depending on the complexity
i of the control calculation and the repetition frequency required
to satisfy closed-loop control objectives.

\ Under certain circumstances, it is possible to derive a closed-
y loop feedback form for the optimal control law directly, i.e., the
control u can be expressed as a function of the state x:

u = u(x) L31)

In this way, the current best estimate of the state can be used to

calculate the current best value of control to be applied, as

illustrated in Figure 11. The motivations for this state feedback
control law and some conditions under which it can be obtained are

discussed in the next section.

f b. Linear Optimal Control

A large and important class of problems for which an opti-
mal feedback control law, u = u(x), can be found directly is that
characterized by a linear system model and a performance index whose
elements are quadratic forms. Under these conditions, a linear
feedback control law can be found; i.e., the variational control

du 1is a linear function of the variational state &x:

Su(t) = -K(t)sx(t) (52)
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where the linear gain matrix K(t) can be pre-computed and stored.
The on-line, instantaneous control is calculated by retrieving the

current value of K(t) from memory and merely multiplying by the

current best estimate of the state x. The method of deriving this
optimal linear feedback control law is called "linear-quadratic"

design or '"quadratic synthesis."

u . (t)
—opt Y x(t)
CONTROLLER ———={ PROCESS T——=

e ———— e :
|| |
| OPENS AT t
; 44 0 [
e |
Figure 10. Optimal Open-Loop Control — Eopt Is Calculated

a priori and Stored

—opt

i x(t)
CONTROLLER . PROCESS =

Figure 11. Optimal Closed-Loop Control — u Is Calculated
from State Feedback “opt
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(1) Quadratic Performance Index

The performance index to be minimized in order to
derive the optimal linear feedback control law (Eq. (52)) is given
by the following functional form:

T g
J = %65 (tf) Sf 6}_(tf) + %—j (GET(t) Q(t) &x(t)
tO
+ sul(t) R(t) ét_x(t))dt (53)

where

Sf is an nxn weighting matrix on the terminal state
error

Q(t) is an nxn weighting matrix on the along-path state
error

R(t) is an mxm weighting matrix on the control deviation
from nominal

S and Q must be at least positive semi-definite and R must be posi-
tive definite in order to obtain the desired form of the control
law. Q and R can be functions of time; all matrices, if they
depend explicitly on system states x(t) or controls u(t), are
evaluated at the reference values §o(t) and go(t).

There are two compelling reasons for choosing the quadratic
form for the performance index. One of these, as will be seen
shortly, is that the mathematics of solving the split boundary
condition problem is greatly simplified. A more satisfying
reason, however, derives from the model linearization process as
presented previously. As shown in Eqs. (5) and (6) and repeated




below, the linearization process entails expanding the nonlinear

model in Taylor Series about the reference values X, and u,

of
£(x(t), ult)) = £(x (t), u (t}) + 53| ox(t)

0
af ,
+ = Su(t) + o (Si(t), Sg(t)) (54)
du N -0
3Q|
g(x(t), u(®)) = g(x,(t), u (t)) + = 8x(t)
e
+ .a_g. Su(t) + B8 (Sx(t), 6u(t)) (55)
du 5k o n

The linear model retains the linear terms and neglects the higher-
order terms a, and éo in the expansion.

If these higher order terms are not forced to remain small,
however, the validity of the first-order linear model can be
jeopardized. Fortunately, it can be shown [5] that minimizing the

quadratic performance index is equivalent to minimizing the magni-
E tude (norm) of the higher order terms integrated over the time

E period of interest. Thus, the perturbation control Su based on the
} the quadratic performance index is the control which ensures the
best linear model of the system being addressed. This is desirable
because the derivation of the optimal perturbation control is based
on the linear model itself.
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(2) Linear-Quadratic Problem and Its Solution

In summary, the linear-quadratic problem is to find
the perturbation control &8u which minimizes the performance

index given by Eq. (53) for the linear, time-varying system
§x(t) = A(t)éx(t) + B(t)du(t) (56)

The initial condition E(to) is given, the final time is fixed at
the value tes and both the perturbation states and perturbation
controls are unconstrained.

Solution of the linear-quadratic problem by the backward sweep
method is well known (Ref. 14, Chapter 5; Ref. 17, Section 5.1).
The solution is:

du(t) = - K(t) éx(t)
where the mxn feedback gain matrix is given by:
k(t) = R ()BT (e)s(o)

and S(t) is the Riccati matrix, which is found by solution of the
Riccati differential equation:

S(t) = - S(t) A(t) - AT(t) S(t) - Q(t)

+ s(t) B(t) R Yet) BT (t) sty

The Riccati equation is integrated backwards in time from the

terminal boundary condition:

S(t =S

£ o
Implementation of this solution (Eqs. (57) through (60))

can be quite simple in terms of on-line computaticnal requirements.

Often, only Eq. (57) need be computed on-line. This is the case

when the references §O(t) and go(t) are known for all time in the




i =
\ ‘

interval of interest (see Figure 12). It is also the case when

none of the matrices involved in the solution (namely, A, B, Q,
R and Sf) depend explicitly on the reference trajectory and control.

- (E)
e COMPUTER
MEMORY STORED FROM
OFF-LINE
K(t) COMPUTAT IONS
— — — — e cmm— o— o—— o— m—  — — — — — —— e c—— c—
ON-LINE
: “u t) TOMPUTATION
3 __( K(t) COMPUTATIONS
——_—_—-—1&———-——————-——————_._——-—
NO COMPUTATIONS
| uit) PHYSICAL
PROCESS

[llustration of Minimal On-Line Computational Require-
ments When Reference State and Reference Control Can

Be Pre-Calculated

Figure 12,

This will not alway: be the case, however, and the designer is left
with two main choices:

1J Re-solve on-line for the gain matrix (Egs. (58) and
(59)) periodically as reference variables change; or

(2) Solve the problem off-line for a number of referernce
conditions and store K in a '"schedule'" as a function of
these reference conditions; on-line computation then
involves looking-up the proper gain from a table* (per-
haps a multi-dimensional table) and making the multipli-
cation of Eq. (57).

* This latter approach is similar to the quasi-static gain-
scheduling technique used frequently in classical designs.
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Various trade-off studies can be performed to determine which of .
these choices results in the most favorable combination of perfor-

mance and computational load.
(3) Quadratic Synthesis

Quadratic synthesis refers to the process of formulat-
ing, solving, and implementing the linear-quadratic design. Act-
ivities which the engineer may have to perform in this overall de-
sign are listed in Figure 13. Also shown in the figure are various
iterations which may occur in the design process to arrive at the
proper final compromise between performance capability and imple-
mentational cost, in terms of engineering effort and computational
hardware and software requirements.

The main thrust of quadratic synthesis, however, is the selec-
tion and refinement of the weighting matrices Sf, Q(t), and R(t) im
the performance index. The selection of these matrices determines
the character of the closed loop control, much as frequency response

shaping can determine the character of a classical design. Simi-

larly, the refinement of the weighting matrices is an iterative
process, requiring a certain amount of experience and engineering
| judgment. However, the weighting matrices provide a great deal of
insight into the design of complex, coupled, multivariable systems.
As a result of this insight, many "rules of thumb" [5] have evolved
for the design of large classes of aerospace systems. A few of
These are summarized below:

1) Often a good choice (at least initially) of the weight-

ing matrices is a diagonal form where the elements along

the diagonal are inversely proportional to the square
of the maximum desirable value of the quantity in

question; or, mathematically, if Qi3> Tys and s;; are
the elements of Q, R and Sf: J J J
qij = ]./[xmm(ft)]i it SN Gt SR G a1 R S (61)




T ———
" ~ - . - - .

rij = 1/[umax(t)].l if 1 = dz @ 3fdF (62)

si5 % Wlxga(tply  if i =j; 0 if i # 3 (63)

PROBLEM FORMULATION

Derive non-Tinear system model (Eq. (46)

Determine reference trajectory and control

Derive linearized system model (Eq. (56))

Select weighting matrices for performance index (Eq. (53))

—
| g o =

PROBLEM SOLUTION

e Solve matrix Riccati Equation (59) to obtain feedback gain
matrix K(t) (this may involve numerical integration)

e CEvaluate performance of optimal gain (either analytically or
in simulation)

ITERATIONS

DESIGN IMPLEMENTATION

— @ Analyze trade-offs between performance and various design
approximations used to reduce implementation costs
L-———= e Evaluate implemented design in simulation
o Install final design and perform checkout and operational
testing

Figure 13. Typical Design Activities in the Formulation, Solution,
and Implementation of the Linear-Quadratic Design
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Another candidate initial choice, one which relates

approximately to minimizing the second variation in J,
is: 3

T

2
3°H
Q(t) ~ 5 (64)
ax(t)

: R(t} ~ —/ (65)

Sf T (66)

where ¢ is the Mayer functional (Eq. (41)) and H is the ,
Hamiltonian (Eq. (42)) and the subscript (o) refers
to the reference trajectory. ‘

2) The larger the norm of the matrix S¢ (i.e., 1lsfay), the

larger the gain matrix K(t) at times near the final time.
Thus, as the final time approaches, certain elements of
the control vector may get (unacceptably) large. One
way of dealing with this problem is to gradually bring
[1Q(t)||, which penalizes state deviations along the

path, to a magnitude comparable with Sf when nearing tf.

3) The larger !|Q(t)||, the larger the gain matrix K and
the shorter the time period in which state perturbations
are reduced to small values. In effect, increasing

|1Q(t)]| increases the bandwidth of the closed-loop

system.
: $) The larger ||R(t)||, the smaller the gain matrix K and
F the slower the system response. i
|

5) Frequently, the perturbation state vector contains
variables and also their time derivatives (e.g., pitch
angle and pitch rate). In such a case, penalizing by 7

Q the pitch angle only and not its rate of change will
lead to a more oscillatory response. Penalizing the
pitch rate also will reduce overshoots and lead to a
less oscillatory response. This is akin to increasing
the damping coefficient of a second-order syvstem.
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c¢. Comparison to (Classical Methods

As mentioned previously, classical methods normally
address only a subset of the systems previously considered, namely,
the subset known as linear, time-invariant systems. Such systems

are characterized by constant-coefficient differential equations.

This permits the formation of output/input transfer functions and
the transform analysis of such relations by frequency domain meth-
ods (Bode Diagrams, Nichols' Charts, etc.). When applicable, such
methods yield valuable information about the character of the SYS -
tem, which can be used to evaluate and improve control system
designs. Even if a linear, time-invariant, quadratic synthesis
method is applied to the design of particular control system, it
is good engineering practice to check and analyze the resulting

design using classical methods wherever possible.

The remainder of this section compares various aspects of
the classical design methods with corresponding elements of the

optimal control approach.
(1) Comparison of System Structure

Optimal control theory distinguishes between the con-
trol u, state x, and measurement y of a linear system. Again,
the system parameters may be time varying. Classical control theory
distinguishes only between the control (input) u and the measure-
ment (output) y of the linear system. The system parameters are
constant. An illustration of the two basic system structures is

provided in Figure 14.
(2) Comparison of Design Criteria

Optimal control theory minimizes an index of system
performance in the time domain. The index contains both constant
and time-varying weighting matrices that, to a large extent, can be
chosen freely. The elements of these matrices have a rather direct
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CLASSICAL CONTROL
INPUT
REFERENCE __iQER_RQ.R.. compen- | _u(t) Teryep | _ output
SATION ! PLANT
INPUT 3 , y(t)
r
?
b CONTROL
MODERN IN(PtU)T
u FIXED | _ OUTPUT
' PLANT y(t)
— | STATE
REFERENCE CON- Lo (t)
* INPUT TROLLER [~ 2
L Figure 14. Comparison of the Basic System Structures of

Classical and Optimal Control Theory (Example:
Single-Input/Single-Output)

physical interpretation. The final time of the (transient)
response may be prescribed arbitrarily, and requirements on the
final state can be incorporated.

Classical control theory defines the '"desired," fixed,
closed-1loop pole locations, associated with '"desirable'" system
response. However, the relation between closed-loop pole loca-
tions and system response becomes more obscure as the system
becomes more complex (multi-input/multi-output). Also, the rela-
tion between closed-loop pole locations and system response 1s not
3 unique: the location of the closed-loop zeroes is also of impor-
tance. Final time of the response is fixed at infinity, since the

main interest is really in steady state behavior [13].

(3) Comparison of the Control Law

Optimal control theory, as applied to the quadratic

performance index, leads directly to a linear feedback law with

state vector are to be fed back to all controls. The time-varying

time-varying gains. In general, all elements of the (n-dimensional)




gains lead to time-varying locations of the closed-loop poles and

Zeroes.

Classical control theory assumes control to be of the linear,
output-feedback type, i.e., the elements of the (m-dimensional)
measurement vector are to be fed back. The gains are assumed to
be constant. They are chosen such that the '"desirable'" closed-loop
pole locations are obtained. If this objective cannot be met, then
""compensation techniques' (cascade compensation; feedback compensa-

tion) are used to help achieve 1it.

The classical approach's use of the m-dimensional (external)
measurement vector for feedback instead of the n-dimensional
(internal) state vector leads, in general, to less satisfactory
response, since the measurement vector contains less information
about the system than does the full state estimate. However, a
significant computer resource is required to "estimate' the full
system state from a reduced number of noisy measurements. For-
tunately, modern airborne computing systems are well capable of
this state re-construction (by Kalman filter's, for example); this

fact helps make the full state feedback design viable.
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SECTION IE]
PATH CONTROL SYSTEM DESIGN

. INTRODUCTION

A number of aircraft guidance and control problems have been
addressed by the design approaches summarized in Section II.
Typically, the overall aircraft guidance and control task is
broken down into a number of subproblems (navigation, horizontal
guidance, stability augmentation, etc.) and each of these ad-
dressed by design techniques which are best suited to the charac-
teristics and design objectives of the particular subproblem.

The diverse subsystem designs are then integrated, sometimes
in a rather ad hoc manner, to arrive at the total aircraft guid-

ance and control system design.

There is good reason for this process of decomposing the
large, complex problem of guidance and control. Primarily, the
high dimensionality and high degree of nonlinearity exhibited
by the overall problem does not permit direct solution for an
implementable design. Moreover, the widespread success in
developing practical flight control systems by integrating the
individual subsystem designs is strong indication that blind
application of any particular technique to the full-dimensional
problem is not warranted. However, it is important that the
designer have a firm understanding of the interrelationship
of the subsystems while he is designing any particular one.

In this way, oversights and inconsistencies are minimized and the

design integration process should proceed smootily.
To assist in providing this insight into the interrelation-
ship of guidance and control subsystems, this section defines

a conceptual framework by which to partition the path control

problem for discussion and analvsis. The two main partitions
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of this framework, reference generation and perturbation con-

trol, are then discussed separately.

Ze SYSTEM PARTITIONING

Many aspects of aircraft guidance and control can be dis-
cussed within the path control framework illustrated in Figure
15. This conceptual diagram identifies two major partitions:
1) the reference generator, and 2) the perturbation controller. The
reference generation function determines the ''mominal'" state
(trajectory) and control which satisfy the outer-loop control
objectives (guidance, performance optimization, etc.). The
perturbation control function attempts to maintain the actual
state near the nominal ('departure prevention'") while simul-
taneously satisfying other inner-loop control objectives i
(disturbance rejection, stability augmentation, etc.). The
perturbation control is then added to the nominal control to form

the total control, which is sent to the actuation system.

‘—u.\m ONTROL SYSTEM l
| ] TOTAL CONTROL
l MOMIMAL COMTROL | . ~
| REFERENCE I |

RENERATOR

:“T':;‘:FMFT()\;‘X‘ PERTURBATION
| R 4 CONTROLLER INCREMENTAL
| ] (PERTUPRATION)
CONTROL

B o B 2l 905 e e i 0 s ol 0 :

NAVIGATION MEASLREMENTS

YSTEM

AND SENSORS

Figure 15. Generic Block Diagram of a Path Control System
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The basis for the structure illustrated above lies in the
nature of the linearization process (as discussed in Section
IT) and in the related concept of '"meighboring path" optimal
control (Ref. 14, Chapter 6). In this concept, the reference
solution addresses the full-scale, nonlinear system model to
obtain the coptimal "open-loop'" control and associated optimal
trajectory, which satisfies outer-loop control objectives. The
perturbation control is then derived through linearizing about
this reference solution and determining the linear feedback

gains which minimize deviations from the reference.

In practice, the '"pure' optimal path and neighboring
optimal path problem is not generally addressed in full dimen-
sion. Rather, many simplifications and engineering approxima-
tions are made in the design process. These approximations
lead to a suboptimal solution to the overall problem. Moreover,
such approximations frequently obscure the interface between
the two conceptual partitions of reference generation and per-
turbation control. For instance, the reference solution to
the nonlinear, outer-loop problem (e.g. minimum time to climb)
may make approximations which neglect fast dynamics (e.g.
pitch angle and rate) and treat certain fast-varying system
states (e.g. flight-path angle) as "artificial" controls. The
output of the outer-loop problem solution now consists of
some of the reference states (e.g. altitude and velocity) and
"artificial" control variables (e.g. flight path). Before
this problem can be cast in the path-control framework (Figure
15), nominal values must be computed for the remaining refer-
ence states and the true reference control (e.g. a '"trim"
elevator and nominal thrust history which are consistent with
the reference velocity must be computed). Often it is con-
venient to locate such computations (e.g. elevator trim) with
the inner-loop control functions, i.e. within the perturbation
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control partition. Notwithstanding such exceptions, the path-
control formal structure defined above is a valid and helpful
context within which to view the design of the overall system,

as demonstrated in the remainder of this section.
G REFERENCE GENERATION

As defined above, reference generation addresses outer-loop
control objectives, of which there are two general categories:
(1) performance optimization and (2) guidance. The distinction
between these two classes is that performance optimization is
not generally concerned with geographic position, but rather
with the time-optimal or fuel-optimal maneuvers or transitions
between energy states. Guidance, on the other hand, is primarily
concerned with position attainment, and performance optimization

is viewed as a secondary objective.

Many types of performance optimization are of major signi-
ficance only for supersonic or fighter aircraft. Such problems
include minimum-time and minimum-fuel climbs, dives, and turns.
A survey of literature describing the application of optimal
control theory to selected performance optimization problems
is presented in Table 3. Such performance optimization problems
are not considered further in this report in their "pure" form,

but only as performance optimization relates to optimal guidance.

For transport aircraft, the guidance problem is conven-
tionally divided into the horizontal and vertical planes.
Horizontal guidance addresses the synthesis of trajectories
which overfly prescribed waypoints or avoid hazardous geographic
regions, both without and with control of the time at which various
points on the trajectory are reached (time-of-arrival guidance).
Vertical guidance is concerned with achieving time-optimum or
fuel-optimum altitude/range profiles, with avoiding vertical
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TABLE 3

SURVEY OF AIRCRAFT PERFORMANCE OPTIMIZATION LITERATURE

REFERENCE

NO.

18 [}
®
¢

19 ]
0

20 [

2l .

22 .

23 ®

24 )

PROBLEMS ADDRESSED

Minimum time to
climb (change energy
level)

Minimum fuel to
climb

Maximum range
profiles

Minimum time to gain
energy

Minimum fuel to gain
energy

Minimum time loop
maneuver

Three-dimensional
maneuvering--
minimum-time
transition from
initial to final
altitude, velocity,
and heading

Three-dimensional
minimum-time turns

Three-dimensional
minimum-fuel turns

Minimum-time turns
at constant
altitude

COMMENTS

® Uses eiergy-state approximation and
energy manacement techniques

e Comparison of approximate and near
exact solution

e Numerical results for two represen-
tative supersonic aircraft

e Compares singular perturbation
approach to conventional energy
management methods

® Four-dimensional state model

e Calculus of variations approach

e Numerical results for typical high-
speed jet aircraft

e Singular perturbation approach

o Consider aircraft constraints
(thrust maximum, g-limit, etc.)

e Numerical example of F-4E engaging
with F-106

e Numerical results for F-4H aircraft

e Numerical results for F-4H aircraft

e Numerical results for hypothetical
supersonic airplane
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threat contours, or with terrain following. If necessary, three-
dimensional (or three-dimensional plus time) guidance objectives

can be satisfied by integrating the horizontal and vertical designs.
For example, the horizontal guidance solution for total path length
can be used as input to the vertical guidance laws, which are then
solved to determine the fuel optimum altitude/velocity profile to
achieve this desired total range. The horizontal and vertical guid-

ance problems are discussed separately below.
a. Horizontal Guidance

Horizontal guidance objectives, as a rule, stem from two
higher-level concerns: (1) flight management and (2) threat avoid-
ance. Flight management is concerned with the synthesis of tra-
jectories which:

° pass through specified waypoints in a controlled manner

] transition from an initial location (waypoint) and head-
ing to a final location (or location and heading)

® intercept and fly along a line in a specified direction.

Threat avoidance in the horizontal plane,* of course, is concerned
with the avoidance of specified hazardous topographic regions with-
in a given altitude range so as to minimize the exposure to threat

or maximize the probability of mission success. In addition to these
primary concerns, horizontal guidance objectives frequently include
control over the time of arrival at specified points along the path,
notably the terminal point.

* Strictly speaking, the threat avoidance problem is three-
dimensional,involving the consideration of altitude as well as
horizontal position in order to avoid the three-dimensional threat
volumes. For illustration here, the horizontal aspects of the
threat avoidance problem will be emphasized, with altitude assumed
to be constrained within some acceptable range. The algorithm
which generates the simulation results presented later, however,
is capable of treating the full three-dimensional problem.
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(1) Minimum-Time Transition

b Most common problems in horizontal guidance can be
classified into three types [25]:

Type 1: Flying from an initial point and heading to
a specified final point and heading;

[89]

Flying from an initial point and heading to
intercept and then fly along a line of spec-
ified heading; and

Type

T————

Type 3: Flying from an initial point and heading to
a specified final point with arbitrary final
heading.
Many more complicated horizontal guidance problems can often be
interpreted as a sequence of these basic problem types.

The solutions to the three guidance problems defined above
are not unique; i.e., problem Type 1 may be solved by a number of
steep turns and straight path sections or by a few sweeping turns. |
In the interest of being able to generate efficient and predictable

trajectories for all initial and final conditions, it is reasonable
to ask what trajectory performs the desired transition in minimum

time.

In formulating the minimum-time optimal control problem, one

typically uses the planar, point-mass aircraft model:

' X = v (67)

y = ¥y (68)

{,x= - (f,/m) sin y (69)

| (/y= (£,/m) cos ¥ (70)

|
k
| where ¥ is the heading angle measured clockwise from the x-axis,

R

’ v = tan

(Vy/Vy) (71)
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and where

x and y are the coordinates of position in the plane
Ve and vy are the components of velocity in the plane

fi is the lateral force.

The lateral force £, can be considered to be the control, or else
A

the bank angle ¢ can be used as the control, since the two are

related by:

f, = m g tan ¢ (72)

By convention, positive ¢ corresponds to right wing down.

Realistically, the control variable must be constrained,

either by specifying a minimum allowable turning radius Rmin’
maximum allowable bank angle dmax® ©OF maximum allowable lateral

force fl — For constant velocity turns, these are related by:
= [ g
Rmin V:/(g tan i¢max') (73)
= | 7
fLmax g van EJJmax' (74)

where V is the total aircraft velocity magnitude.

The minimum-time transition can now be found by minimizing
the Hamiltonian:

H =1 = lex + ley + fg/m (-\5 sin ¢ + \4 cos ¥)  (75)

subject to the system equations (67-70) and control constraint
equation (74). In the above equation, the A's are the costates
or LaGrange multipliers. The three types of guidance problems
defined previously can be formulated by specifying appropriate
final conditions on the state and costate.

As can be seen in Equation (75), the control variable enters
linearly* in the Hamiltonian. Application of the minimum principle

* Rather than, say, quadratically as in the linear-quadratic
(quadratic synthesis) problem described in Section II.
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to such problems results in a so-called singular solution. This

is evident since the necessary condition:

3H = 0 = X\, sin ¥ - X\, cos ¥ (76)
S 3 4
du
does not result in expression solvable for the control fl in terms
of the state and costate variables. Instead, for singular problems,

the control is found by the requirement that Eq. (76) be satisfied

for a finite amount of time: in other words, the time derivative
of 03H/3u must be zero.

Carrying through the conventional techniques for solving

such singular problems, it has been shown [25] that the non-singular

intervals of trajectories consist of turns with maximum bank angle
(and hence minimum allowable turning radius) and the singular inter-
vals of optimum trajectories consist of straight-line flight.
Specific optimal transitions for the three types of guidance
problems described above can be synthesized from such maximum bank-
angle turns and straight line segments, using certain heuristic
rules to assure the attainment of prescribed end-points with a

minimum amount of maneuvering.

Application of the above to the horizontal guidance problem
takes on both off-line and on-line connotations. Off-line, of
course, the theory can be used to synthesize particular flight
plans to fly prescribed scenarios. In addition, on-line algorithms
have been generated to synthesize minimum time or minimum path-
length transition trajectories for end-point attainment. As an
example, one such on-line algorithm [26], known to require about
10 milliseconds on a fixed-point Sperry 1819A computer for solution,
has been successfully used for trajectory 'capture" -- in particular
for the minimum-time nulling of lateral errors which are typically
discovered by an on-board guidance system when it acquires highly

accurate microwave navigational data near the runway.
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The outputs of the horizontal guidance trajectory generation,

then, are the reference trajectory coordinates Xp» ¥ and the

R
reference bank angle ¢,, which is nominally zero in the straight
segments or equal to =+ ¢ .. during turns. (Command smoothing
or rate-limiting may also be used to '"soften' these transitions in
b command between zero and ¢ :

R max "’

(2) Controlled Time of Arrival

As mentioned previously, guidance objectives fre-
quently include controlled time of arrival at specified points
along the synthesized reference path. Control over the time of
arrival at an arbitrary point on the path can be exerted either by
modification of the total path length up to that point, (e.g.,
path-stretching maneuvers) or by modulation of the aircraft speed.
Again, as was the case with horizontal flight-path synthesis, an
infinite number of solutions to the time of arrival problem exist.
One solution practical for many flight management applications 1is

discussed below.

The problem is to synthesize a speed profile for a given
reference horizontal trajectory such that an aircraft starting with
initial speed V, at time t_ arrives as the final point at the

specified time t,. with velocity V.. The constraints are that
1% £ ) f

the speed V must be within the range of the minimum (V ) and

min-
maximum (Vma() speed restrictions of the aircraft and that speed
changes must be carried out with constant acceleration A, or de-
celeration Ad' selected to fit the performance of a particular

aircratet.

A particular practical algorithm [27] for solving the problem
posed above is described below. The solution is broken down into
three steps.

First, the algorithm tests the feasibility of the reference

path length L by comparison with Lmax and Lmin’ which are

the maximum and minimum distances the aircraft is capable of traver-
sing in the allotted time, respectively. If the path length exceeds
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Lmax’ the speed profile is beyond the aircraft's performance
capability of flying, and a later arrival time must be specified.
If the path length is less than Lmin’ it must be increased so that

the new path length is within the range of Lmin to L for in-

,
stance by using a path-stretching maneuver. oy
Second, the algorithm defines an appropriate speed profile
consisting of at most three segments: an acceleration or deceler-
ation segment starting at Vo, a constant speed segment at some
nominal speed Vn, and another acceleration or deceleration seg-
ment ending at Vf. The definition of the appropriate speed pro-
file involves two additional parameters Ly and Ly, which are
defined respectively as the minimum and maximum distances that can

be travelled in the allotted time interval if speed is constrained

to lie between ¥ and Vg. These parameters correspond to the
shaded areas under the speed profiles shown in Figure 16. The
parameters L1 and L2 are used to select an appropriate refer-
ence speed profile from the candidates shown in Figure 17. For
example, if L 1less than L1 (and if L passes the feasibility
test in Step 1 above), the appropriate profile must include sus-
tained flight at a nominal speed Ve lower than both V, and Vf,
as shown in the first curve in Figure 17

Third, the numerical values of the parameters in the selected
speed profile are determined by matching the area under the selected

curve with the reference feasible path length L.

&
L2

The output of this time-of-arrival control algorithm is a
reference speed profile Vo which may now be included with the
horizontal guidance reference states Xps  YRo and dp. S defined

above.
(3) Threat Avoidance

A very promising area for the application of

optimization theory is the problem of maximizing the probability

of success of tactical missions subject to enemy threats. The
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problem is twofold: (1) determining the optimal flight path
through the threat environment, and (2) determining the optimal
utilization of countermeasure resources so as to reduce threats
along the selected path. Obviously and unfortunately, these two
aspects of the problem are highly coupled: the optimality of the
selected path in terms of mission success probability and proba-
bility of survival is strongly dependent upon how counter-
measure resources are applied. Conversely, it is usually best to
direct countermeasure resources SO as to concentrate on paths
which exhibit some degree of optimality in terms of fuel expend-

iture or total time of exposure to threats.

Many simplified approaches have been taken to the threat
avoidance problem, with very limited success. The main difficulty
lies in the high degree of dimensionality incurred by the strong
coupling of the several important factors cited above. Simpli-
fications which neglect certain factors can be sufficiently sub-

optimal so as not to be worthwhile.

One technique which is highly suited to such optimization

processes 1s dynamic programming. Dynamic programming converts

the problem to a multistage decision process; the control solution

is formulated as the sequence of decisions which optimizes a multi-

faceted performance index over the entire trajectory. Basically,
dynamic programming converts the simultaneous determination of the
entire optimal control sequence into a tractable sequential

solution of vastly simpler intermediate optimization problems.

Historically, dynamic programming solutions to high-dimensional
problems have incurred severe computational requirements. Much of
this difficulty stems from the use of conventional, direct algo-
rithms which attempt to exhaustively search all possible control
combinations. Innovative solution algorithms, however, have been
developed to obviate the need for this exhaustive search. More-
over, advances in computer architectures, namely the advent of

highly parallel array processors, ideally suit the dynamic
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programming solution technique of decomposition into multiple sub- |
problems. Consequently, a dynamic programming solution to the
sophisticated threat avoidance problem is extremely feasible. s

To illustrate the performance of a particular dynamic pro-
gramming algorithm, results are presented below from some recent {
work [28] which generates optimum flight paths and countermeasure
resource allocation for penetrating enemy defenses. The algorithm
is capable of incorporating:

1
|
i
e Three-dimensional and flight direction dependence of ]

the lethality of threats, 1

e Variation in fuel consumption as a function of speed
and altitude,

e The effects of uncertaiaty in the existence and
location of the threat,

e Terrain masking,

e [Expendable Electronic Warfare (EW) resources
(e.g., decoys, chaff, anti-radiation missiles)

e Non-expendable EW resources (e.g., radio fre-
quency jamming)

@ Variations of aircraft radar cross-section as a
function of aspect angle,**

e Boundary conditions, such as requiring the ai;craft
to approach the target from a specific direction,

e Fuel constraints.

The algorithm will make the optimum tradeoff of available penetra-
tion techniques such as flying around threats, jamming, decoying, j
flying under radar coverage, etc., to determine the optimum means

of penetration.

Figure 18 shows the symbology used in the simulation results
which follow. As shown, the threats may either be known with
certainty, or uncertainty may exist in their actual location®

* Additional "pop up'" threats, which represent those detected
during the mission by on-board sensors, can also be handled
by the simulation model.

’ ** [.e., the angle between the aircraft's plane of maximum cross-
sectional area and the radar line-of-sight.
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(all threats are SAM sites). Threats against which expendable
resources have been deployed are indicated as shown; such deploy-
ment, of course, serves to reduce the effectiveness of the threat.

An example run of a dynamic simulation developed to evaluate
the threat avoidance algorithm is shown in Figure 19. The scenario
seeks the attainment of two objectives Tl and T2 in the presence
of thirteen threats: Al, A2, B1, B2, B3,. B4, BS, B6, B7,
Cl, C2, C3, and C4. The location of some of the threats (A2, C1,
C2, C3, C4) are not known with certainty, hence the dashed
uncertainty contours. The flight path shown is the minimum-fuel
solution, which is used to start the algorithm -- it is not the
final solution. Shown at the bottom is the allocation of Electronic
Countermeasure (ECM) power to each threat, three quantized values
of chaff, two decoys, and one Anti-radiation Missile (ARM). The
fuel wused (11,750 1bs), probability of survival (0.738), and the
probability of accomplishing the first and second objectives
(PT = (0.935, PT = 0.774) are given on the right side. Even
tho&gh Figure 19 %s not the final optimum path, the ECM power is
optimally allocated among threats. An examination of the alloca-
tion of radio frequency (RF) power shown at the bottom of Figure
19 indicates that RF power was allocated to several threats at
many points during the scenario. An example is shown at time point
12:20 where the RF power is allocated to threats C3 and C4.

Figure 20 indicates the results obtained after the program
optimizes the path and allocation of resources. Note the large
increase in all of the performance indicators (e.g., the probability
of survival went from 0.738 to 0.887). Also, the allocation of
many of the expendables changed as was expected. One unit of chaff
originally allocated to threat Cl was changed to Al and the decoy
allocated to B3 was reallocated to Bl. All expendable EW resources
are deployed and all of the available fuel is used. This occurs be-
cause allocating a resource results in increased performance com-
pared to not allocating the resource; i.e. the cost penalty placed
on actually using the allotted expendables is low compared to the
cost penalty associated with mission failure.
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Thus far the optimum solutions have all been based on a priori
(although probabilistic) information. Consequently, the optimum
trajectory solutions could have been performed off-line and stored
prior to the flight. If onboard sensors or a reconnaissance/
communications system reduce uncertainty in threat location (or dis-
cover previously unknown threats), radically different solution tra-
jectories and optimum allocations of resources result. Figure 21
presents such an example where on-line recomputation of the optimum
solution is necessary. As shown, it is assumed that the aircraft
has proceeded successfully to the point P, at which time onboard
sensors determined the actual location of threat Cl. This elimi-
nates the uncertainty in Cl's location as indicated by the removal
of the dashed circle around Cl. The new allocation of resources
and flight path is shown. Since the flight path to objective T1
is more direct than in Figure 20, more fuel is available to fly
around threats C2 and C3. This caused a reallocation of a decoy
from Bl to B3 and a reallocation of chaff from €2 teo AZ.

With this new allocation and flight path, the probability of sur-
vival increased to 0.897. Results of this nature were also obtain-

ed when previously unknown "'pop-up threats were introduced.
P pop-up

Computer resource requirements for executing (on-line) the
dynamic programming algorithm discussed above are not prohibitive.
Even the direct-search, serial processing form as implemented on
a Univac 1108 (1 wu sec cycle time) takes less than 8 minutes for

complete solution. Using the implicit stage algorithm can reduce

this to less than 8 seconds; however, this algorithm has the unde-
sirable property of prohibiting transitions back toward the start-
ing point. This difficulty is alleviated by other mathematical

techniques, such as the method of successive approximations, which

can obtain an approximate solution on a serial processor in about
10 seconds to a minute. Far greater speed improvements (1000/1
speed up) are possible if off-the-shelf parallel processors are

emploved. This occurs because the computations necessary to
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determine the optimum transition for all states at a given stage
are independent of each other and, therefore, can be performed in
parallel. Typically, the designer will use such a dramatic im-
provement in processing speed capability to obtain a more accurate
solution while letting solution time approach some reasonable
number (say 30 seconds). This is usually done by reducing the
"granularity'" of the solution, i.e., by breaking the optimization

problem up into a greater number of stages.

The preceding has shown an implementable basis for reference
generation in the horizontal plane which 1s an alternative to con-
ventional two-dimensional horizontal guidance. The outputs to the
inner loop are the same, however, namely the reference positions
in the horizontal plane XR and YR and the velocity magnitude

Vi Nominal bank angles for required turns can also be

R
synthesized by relating bank angle to turn radius R by using the
relation:

4
R = Vp/(g tan |opl) (77
b. Vertical Guidance

Typical objectives of aircraft guidance in the vertical
plane are the generation of:

e Time-optimum or fuel-optimum altitude profiles to achieve
a given altitude and/or range transition;

® Profiles to maximize range for a given thrust level and
fuel allotment;

e Commands to follow terrain or avoid vertical threat con-
tours while simultaneously optimizing other aspects of
performance (e.g., minimum throttle activity).

A moderate amount of work has addressed optimal control solutions
to these vertical guidance problems, notablv Refs. [18], [19] and
[29] through [32]. Most of the practical on-line implementations
of these solutions derive from the application of the so-called
"energy management (EM)' methods.
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The EM methodology is characterized by order-reduction
approximations to the point-mass longitudinal equations of air-
craft motion. In particular, the energy state approximation (see
Appendix) 1s used to eliminate the dynamic equations for velocity
and flight path angle in favor of a single dynamic equation in

the energy state:

E = (T-D)V/m (78)

where E is the total (sum of kinetic and potential) energy per

unit mass, 1.e:

and where

T is the thrust
D is the drag
V is the velocity magnitude
m is the mass
nh is the altitude
g is the acceleration of gravity
Thrust is assumed to be a function of altitude (h), velocity, and

throttle setting (m):

-
1]

T(h,V,n) (80)
and dreg is a function of altitude and velocity:

D D(h,V) (81)

The other dynamic equations retained in the EM methodology are:

=
]

f(h,V) (83)




where x 1is the along-track position coordinate and f is the
fuel flow rate. In the equations above, both angle-of-attack and

flight-path angle are considered small, and 1lift equals weight.

Before exploring some illustrative examples of the EM method-

ology, it is appropriate to note several important points:

e Certain problems are addressed by interchanging variables
in the EM equations. For example, specific energy E E
may be used as the state variable and time as the indepen-
dent variable in one type of problem, but in another, it
may be convenient to divide Eq. (78) by Eq. (83) to change
the independent variable from time to mass.

e EM approximations generally treat either h or V as the
control variable, since the dynamics of these quantities
are neglected and the derivatives of the states (E,m,etc.)
can be expressed in terms of these variables. V and h
can be related to one another and to the state E by
Eq. (79).

e¢ In the context of an optimal control problem, the energy-
state approximations imply that the control variable h
or V varies slowly over most of the trajectory, but it
may contain discontinuities and rapid variations confined
to narrow regions. Various extensions to the EM methodol-
ogy have been developed, for example by using singular
perturbation theory to provide corrections to the approx-
imate solution through analysis of the h and V dyna-
mics in a "stretched" time scale [19] (see Section II).

(1) Minimum Time to Climb

Perhaps the most easily discernible application of EM
methods is determining the altitude/velocity profile which mini-
mizes the time to climb to a specified energy level. Minimi:zing
the time to change energy levels is equivalent to maximizing the
rate of change of energy E (Eq. (78)). Thus, the approximately
optimal reference velocity (VR) profile is the one which maximi:zes

-

E for a given E, or mathematically:

VR = agrg {max((T(E,V)-D(E,V))V/m]} (84)
v




'

which can be read "VR i1s the value of V which maximizes the
expression [(T-D)V/m] with respect to V."

When this expression (Eq. (84)) for the approximately optimal
control is evaluated numerically, a solution path similar to that
shown in Figure 22 typically results. The path is characterized
by portions which satisfy Eq. (84), connected by portions of con-
stant energy contours. Thus, the approximately minimum-time path
from point A" on energy level E1 to point G on energy level
Es 1s given by:

e a rapid dive to B~

e motion along the optimal segment B°C to point C

e a rapid dive to D*

e motion along the optimal segment DF to F

e a rapid climb (zoom) to G.
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Figure 22. Typical Minimum-Time Climb Path
to Higher Energy Level [18]

This rapid dive is characteristic of transonic trajectories,
where for certain aircraft it becomes more economical to gain
velocity very quickly (by diving) so as to get through Mach 1 as
rapidly as possible.




As shown in the figure, the approximately optimal path as
derived from EM methods exhibits discontinuities in the control
variable V, which appear as corners in the profile. These dis-
continuities stem from the energy state approximation, which

neglects the dynamics of V and assumes that V and h can be

traded instantaneously at constant energy levels using the relation:

~
-

h = (E - 1/2 V) / (85)

uc

More accurate solutions (four-dimensional state, numerical solu-
tion by the gradient method) do not exhibit such discontinuities
(Figure 23), although overall agreement is good between the more
accurate method and the much easier approximate EM method. A

singular perturbation approach has been used [19] to analyze the
discontinuities of the approximate method and compute corrections

which effectively smooth the corners in the approximate solution.

~ TERMINAL POINT

ALTITUDE (THOUSANUS OF FERT)

Figure 23. Comparison of "Exact'" and Energy-State
Minimum Time-to-Climb Paths [18]




The reference quantities generated by the minimum time-to-
climb solution, then, are reference velocity VR and reference
altitude hR' While these quantities are considered '"controls" by
the outer-loop solution, they are nevertheless states of the over-
all path control problem. Calculation of the remaining reference
states and reference controls from these key reference quantities

is discussed in Paragraph C below.

1o

(2) Minimum Fuel Problems
Application of EM methods to minimum fuel problems
often involves a change of independent variable from time to mass.

This is done by dividing Eq. (83) into Eq. (78):

dE _ V(T-D) (86)
dE _ V(T-D)
am mt

Minimizing the fuel used to change energy levels is equivalent to
maximizing dE/dm, the rate of energy gain per change in mass.
Thus, the approximately optimal reference velocity for fuel-minimum
climb is:

VR = arg {max [LT-D)Y/mf]} (87)
v

An example [25] approximately minimum-fuel climb path is shown
in Figure 24. For comparison, a standard recommended economical
climb path (an 0.75 Mach climb) is also shown. The near optimal
method saves 289 pounds of fuel, or 15.5 percent of the nominal

expenditure, for the example aircraft in a climb to 30,000 feet.
(3) Maximum Range Problems

Application of EM methods to maximum range problems
typically involves a change of independent variable from time to
range coordinate. This is done by dividing Eq. (82) into Eq. (78)

and Eq. (83):




To find the trajectory
range [xo, xf], one can minimize the total mass change subject to

the energy

Thus the approximately optimal reference velocity

dE
dx

dm
dx

arg

ALTITUCE (THOUSANDS OF FEET)
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Optimal Path at Military Thrust [
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which minimizes fuel over a specified

{

(38)

(89)
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| Figure 25 shows a typical altitude/velocity profile for an approx-
imately minimum-fuel climb, cruise, and descent to zero altitude
at a specified range. Figure 26 presents corresponding plots of

altitude and fuel versus range [25].
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Figure 25. Minimum-Fuel Climb, Cruise, Descent -
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(4) Minimum Direct Operating Costs

Instead of minimizing the fuel usage alone over
a fixed range, it may be more desirable to minimize a combination

of fuel and transit time, expressed in terms of direct operating

costs. Thus, the cost function to be minimized is:
= = = - s
J Cgme + ¢, (tg t,) (82)
where Ce and ¢, are the unit costs of fuel and time, respectively,

me is the mass of fuel burned, and (tf - to) 1s the transit time.

In integral form, the cost can be written:

:
J = f ol L Cp * cp) dt (93)
t
(0]

where f 1s the fuel burn rate.

Solution for the altitude/range profiles which minimize direct
operating costs (Eq. (93)) subject to the approximate state dynamics
(Eqs. (78) through (83)) can now be addressed using the minimum prin-
ciple. Typically, a change of variable as exemplified by Eqs. (88)
through (90) is again used. Reference [30] presents some results
for subsonic turbofan aircraft with the restriction that the solution
trajectory consist of three segments: a monotonic climb to cruise
energy level, a segment of optimal subsonic cruise, and a monotonic

descent to the final energy level.

(S5) Terrain-Following Guidance

The primary objective of terrain-following guidance
is to minimize exposure to the enemy by producing flight paths which
lie as close to all terrain points as possible. To be practical,
however, the terrain-following guidance should produce reference
trajectories which can be followed extremely well by actual aircraft.

The terrain-following control systems that are currently on
operational aircraft compute flight-path angle commands based on




a '"critical" point on the terrain ahead of the aircraft. For dif-
ferent systems, the methods vary for determining which point is
currently the most critical. Since it is the flight-path angle,
or slope, that is directly controlled, the actual vehicle path is
not tightly controlled. The path is the integral of the slope with
respect to range; therefore, the height error is the integral of
the total slope errors, which are due to both sensor errors and
control system implementation errors [31]. Operational terrain-
following systems also rely on manual throttle control or on auto-
throttles which attempt to maintain nearly constant speed; neither
of these methods provides efficient engine operation, in terms of
both engine life and fuel consumption.

To overcome these difficulties, recent research has been
directed toward total path control, as opposed to the single
"¢critical' point techniques discussed above. Focusing on the
total path also allows simultaneous consideration of secondary
objectives, such as meeting checkpoint times (controlled time of
arrival) or optimizing engine performance (engine life or fuel
consumption).

One of the total path techniques is based on the cubic spline*

reference path [32]. The concept is illustrated in Figure 27

(p. 82). As shown, the reference altitude hR path is tangent

to the minimum clearance curve, but must be above it when the cur-
vature of the terrain (and hence the clearance curve) is suffi-
ciently sharp as to exceed the acceleration capability of the air-
craft. The total solution path is formed by parametrically opti-
mizing the cubic spline form subject to the operational constraints
(g-limits, etc.) imposed. Using the differentiability property of
the cubic spline, the optimization procedure can generate not only

the reference altitude profile hy but also the rates of change

* A cubic spline is a continuous curve consisting of cubic
polynomial segments pieced together such that the curve
has continuous first and second derivatives.
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hp and hR. These, in turn, can be used to establish a complete

58

and consistent set of reference states; for example, YR can be .
tound from HR by the relation:

h, = VR sin YR (94)

R

once the reference velocity VR is established.

Reference velocity can be determined so as to satisfy any of

the secondary guidance objectives cited above. For example, the

velocity which corresponds to sustained flight at a desired, allow-
able energy level may be selected as reference. Such an example 1is
illustrated by Figure 28, which shows the given potential energy
LghR} and the minimum and maximum total energy (potential plus
kinetic) corresponding to sustained flight at the minimum and max-

min astel \max
allowable constant energy levels; i.e., those which lie tctally

imum allowable velocities (V ). The figure illustrates
within the allowable corridor over a reasonable range. Any of these
allowable energy levels could be selected as the reference ’E,),
say, on the basis of fuel consumption, engine life, mission timing,

etc. The corresponding reference velocity is then found from:

Vp = V2 (Eg - ghg) (95)
c. Calculation of Remaining Refereince Quantities

The preceding has presented several guidance techniques
which can be used to determine optimal reference values of selected
state variables. The path-control concept, however, requires re-
ference values for all states and controls considered. The cal-
culation of the remaining reference states and nominal controls
is not a trivial matter, since all the reference quantities must

be mutually consistent if the overall design is to approach optim-

ality. A very simple example of calculating such a "residual"
reference state is by using the expression for heading rate during

a coordinated turn:
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v =& tan ¢ (96)

Thus, given the reference bank angle dpos the consistent reference

heading rate QR is given approximately by Eq. (96).

More frequently, however, the designer must revert to a de-
tailed, six degree of freedom nonlinear model of the aircraft
(see Appendix) in order to generate a complete and consistent set
of references. Frequently, iterative solutions of these nonlinear
differential equations are required, or approximation techniques
are used to reduce computational burden. Further discussion of

such techniques is beyond the scope of this report.
4. PERTURBATION CONTROL

In the context of the path control problem, the primary ob-
jective of the perturbation control function is the accurate and
efficient tracking of the reference state. Accurate tracking, or
""departure prevention'", serves to enhance the effectiveness of the
reference generation function in achieving over-all path- control
objectives. Constraining the departure from the reference has the
added benefit that, by so doing, the linearity assumptions upon
which the perturbation feedback controller design is based are
indeed valid. Secondary objectives of the perturbation control

function are disturbance rejection, robustness (i.e., the reduction

in sensitivity to uncertainty in the controller design parameters),
and stability augmentation.

The methods used to achieve these objectives are many and
varied. Historically, classical frequency-domain techniques have
been used to design simple analog or digital control loops to ad-
dress the objectives on an individual basis. As air vehicles have
increased in complexity (e.g., additional, redundant actuators) and
mission objectives have increased in sophistication (e.g., path
control), classical methods have given way to proven multivariable
techniques for linear system design. Often, a design is formulated
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using the more comprehensive (and direct) linear multivariable

techniques and checked at various operating points or flight con-

ditions using a classical analysis.

For illustration, two perturbation controller design examples

are presented below, each utilizes a different design concept.

a. Lateral-axis Perturbation Control Design by Pole Placement

Methods

For simplified motion in the lateral plane, only five
states need be considered. These states, expressed in terms of

their reference values and perturbation values, are:

X = XR £ GX
\=)'R+§),
b = vR + g¥ (97)
V = VR + §V
6 = op + 60

The reference values and their rates of change (if needed) are

assumed to have been computed by the reference generator.

The objective is to obtain a closed-loop control system which

will keep the perturbation values small. A classical pole-placement

technique will be used for this example.

The first step in the technique [27] is to derive an adequate

linear model of the aircraft state perturbation dynamics. The de-

rivation begins with a highly simplified nonlinear model:

X = V cos ¥
V sin ¥V
(8/V) tan ¢
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Next, first-order variations are taken on Eq. (98) about the

reference state

§x = -VR sin wRSw + cos ¥_4&V

On
Lo

. 2 .
fY = [ Rk - W [ SV
To eliminate the sin V and cos V¥ terms,

R

V, cos ¥ 0¥ + sin V_4§V
R sin RSV

R

R R

Eq:.

(99) is rotated

into the "moving target coordinate system" by the rotation:

]

(130)

As shown in Figure 29, this coordinate system is attached to the

reference or 'phantom'" position and oriented along the reference

direction of travel.

The linear perturbation model in the moving target coordinate

system, then, is:

]

§x”

<
"

O
. =
|

As noted in Eqs.
coupled through

R

- :
tg/vR) sec p8d - (‘QR/VR) sV

(101)
(102)

(103)

(101) and (102), the linearized equations are

the reference heading rate

V and S is a parameter of the model.

v

RY

which, along with

Choosing bank angle and velocity magnitude as the control

variables and using an empirically derived model of the aircraft/

stability augmentation system, an over-all perturbation feedback
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Figure 29. Moving Target Coordinate System [27]
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